游客
题文

如图,在平面直角坐标系中,有抛物线y=a(x-h)2.抛物线y=a(x-3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点BP是抛物线y=a(x-3)2+4上一点,且在x轴上方,过点Px轴的垂线交抛物线y=a(x-h)2于点Q,过点QPQ的垂线交抛物线y=a(x-h)2于点Q'(不与点Q重合),连结PQ',设点P的横坐标为m

(1)求a的值;

(2)当抛物线y=a(x-h)2经过原点时,设ΔPQQ'ΔOAB重叠部分图形的周长为l

①求PQQQ'的值;

②求lm之间的函数关系式;

(3)当h为何值时,存在点P,使以点OAQQ'为顶点的四边形是轴对称图形?直接写出h的值.

科目 数学   题型 解答题   难度 较难
知识点: 轴对称图形 菱形的性质 相似三角形的判定与性质 二次函数综合题
登录免费查看答案和解析
相关试题

在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:

摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率
0.58
0.64
0.58
0.59
0.605
0.601


(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)试估算口袋中白种颜色的球有多少只?
(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.

(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.

如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60°得PC.

(1)当点P运动到线段OA的中点时,点C的坐标为
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.

2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:

品名
价格
甲种口罩
乙种口罩
进价(元/袋)
20
25
售价(元/袋)
26
35


(1)求该网店购进甲、乙两种口罩各多少袋?
(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?

如图,AB为⊙O的弦,C为劣弧AB的中点.

(1)若⊙O的半径为5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断AD与⊙O的位置关系,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号