为了调查甲、乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:如下:
甲:400,400,408,406,410,409,400,393,394,395
乙:403,404,396,399,402,402,405,397,402,398
整理数据:
表一
质量 频数 种类 |
||||||
甲 |
3 |
0 |
3 |
0 |
1 |
3 |
乙 |
0 |
|
1 |
5 |
|
0 |
分析数据:
表二
种类 |
平均数 |
中位数 |
众数 |
方差 |
甲 |
401.5 |
|
400 |
36.85 |
乙 |
400.8 |
402 |
|
8.56 |
得出结论:
包装机分装情况比较好的是 (填甲或乙),说明你的理由.
(1)解方程:;(2)化简:
(1)计算:;
(2)解不等式:,并把解集在数轴上表示出来.
已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.
(1)求抛物线的函数关系式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ长度取得最大值?其最大值是多少?
②是否存在点P,使△OAQ为直角三角形?若存在,求点P坐标;若不存在,说明理由.
已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.
(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;
(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);
(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.
如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)的图象于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且=
,求m的值和一次函数的解析式.