游客
题文

某校七、八年级各有学生400人,为了解这两个年级普及安全教育的情况,进行了抽样调查,过程如下

选择样本,收集数据从七、八年级各随机抽取20名学生,进行安全教育考试,测试成绩(百分制)如下:

七年级 85 79 89 83 89 98 68 89 79 59

99 87 85 89 97 86 89 90 89 77

八年级 71 94 87 92 55 94 98 78 86 94

62 99 94 51 88 97 94 98 85 91

分组整理,描述数据

(1)按如下频数分布直方图整理、描述这两组样本数据,请补全八年级20名学生安全教育频数分布直方图;

解析数据,计算填空

(2)两组样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;

年级

平均数

中位数

众数

优秀率

七年级

85.3

88

89

20%

八年级

85.4

  

  

  

得出结论,说明理由.

(3)估计八年级成绩优秀的学生人数约为  人.

(4)整体成绩较好的年级为  ,理由为  (至少从两个不同的角度说明合理性).

科目 数学   题型 解答题   难度 中等
知识点: 加权平均数 中位数 用样本估计总体 众数 频数(率)分布直方图
登录免费查看答案和解析
相关试题

某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为 x 轴,喷水池中心为原点建立直角坐标系.

(1)求水柱所在抛物线(第一象限部分)的函数表达式;

(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?

(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.

如图,已知 AB O 直径, AC O 的切线,连接 BC O 于点 F ,取 BF ̂ 的中点 D ,连接 AD BC 于点 E ,过点 E EH AB H

(1)求证: ΔHBE ΔABC

(2)若 CF = 4 BF = 5 ,求 AC EH 的长.

为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.

(1)被随机抽取的学生共有多少名?

(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;

(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?

“五 · 一”期间,小明到小陈家所在的美丽乡村游玩,在村头 A 处小明接到小陈发来的定位,发现小陈家 C 在自己的北偏东 45 ° 方向,于是沿河边笔直的绿道 l 步行200米到达 B 处,这时定位显示小陈家 C 在自己的北偏东 30 ° 方向,如图所示.根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头 D 处(精确到1米)(备用数据: 2 1 . 414 3 1 . 732 )

有一张边长为 a 厘米的正方形桌面,因为实际需要,需将正方形边长增加 b 厘米,木工师傅设计了如图所示的三种方案:

小明发现这三种方案都能验证公式: a 2 + 2 ab + b 2 = ( a + b ) 2

对于方案一,小明是这样验证的:

a 2 + ab + ab + b 2 = a 2 + 2 ab + b 2 = ( a + b ) 2

请你根据方案二、方案三,写出公式的验证过程.

方案二:

方案三:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号