游客
题文

图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cmCD=8cmAB=30cmBC=35cm.(结果精确到0.1)

(1)如图2,ABC=70°BC//OE

①填空:BAO=  °

②求投影探头的端点D到桌面OE的距离.

(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求ABC的大小.

(参考数据:sin70°0.94cos20°0.94sin36.8°0.60cos53.2°0.60)

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用
登录免费查看答案和解析
相关试题

(本题6分)利用尺规作图,补全下图残缺的圆轮,圆心为点O,并保留作图痕迹.

(本 题14分)已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)。

(1)当x取何值时,该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示)。
① 当时,判断点P是否在直线ME上,并说明理由;
② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.

(本 题12分)某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元。
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少。

(本 题10分)如图,抛物线轴分别交于A、B两点。 (1)求点A、B和顶点M的坐标;(2)求△ABM的面积。

(本 题10分)如图,已知二次函数y=ax2+bx+c的图象经过A(﹣1,﹣1)、B(0,2)、C(1,3)。

(1)求二次函数的解析式;
(2)画出二次函数的图象;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号