为了继承和发扬延安精神,满足青少年热爱红色革命根据地,了解延安革命历程的愿望,相关部门在当地中小学选拔了一批优秀共青团员和少先队员,组织他们利用节假日,在红色革命旧址(纪念馆)做“小小讲解员”,每位“小小讲解员”都要通过抽签的方式确定各自的讲解地点.讲解地点有:.枣园革命旧址,.杨家岭革命旧址,.延安革命纪念馆,.鲁艺学院旧址.抽签规则如下:
将正面分别写有字母、、、的四张卡片(除了正面字母不同外,其余均相同)背面朝上,洗匀,先由一位“小小讲解员”随机抽取一张卡片,这张卡片上的字母表示的讲解地点,即为他抽取的讲解地点,然后将卡片放回,洗匀,再由下一位“小小讲解员”抽取.已知小明和小亮都是“小小讲解员”.
(1)求小明抽到的讲解地点是“.枣园革命旧址”的概率;
(2)请用列表或画树状图的方法,求小明与小亮抽到同一讲解地点的概率.
为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为 A、 B、 C、 D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:
成绩等级频数分布表
成绩等级 |
频数 |
A |
24 |
B |
10 |
C |
x |
D |
2 |
合计 |
y |
(1) x= , y= ,扇形图中表示 C的圆心角的度数为 度;
(2)甲、乙、丙是 A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.
如图,在△ ABC中,点 D是 AB边上的一点.
(1)请用尺规作图法,在△ ABC内,求作∠ ADE,使∠ ADE=∠ B, DE交 AC于 E;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若 =2,求 的值.
已知在平面直角坐标系中,点 A(3,0), B(﹣3,0), C(﹣3,8),以线段 BC为直径作圆,圆心为 E,直线 AC交⊙ E于点 D,连接 OD.
(1)求证:直线 OD是⊙ E的切线;
(2)点 F为 x轴上任意一动点,连接 CF交⊙ E于点 G,连接 BG;
①当tan∠ ACF= 时,求所有 F点的坐标 (直接写出);
②求 的最大值.
如图抛物线 y= ax 2+ bx+ c经过点 A(﹣1,0),点 C(0,3),且 OB= OC.
(1)求抛物线的解析式及其对称轴;
(2)点 D、 E在直线 x=1上的两个动点,且 DE=1,点 D在点 E的上方,求四边形 ACDE的周长的最小值.
(3)点 P为抛物线上一点,连接 CP,直线 CP把四边形 CBPA的面积分为3:5两部分,求点 P的坐标.
有 A、 B两个发电厂,每焚烧一吨垃圾, A发电厂比 B发电厂多发40度电, A焚烧20吨垃圾比 B焚烧30吨垃圾少1800度电.
(1)求焚烧1吨垃圾, A和 B各发电多少度?
(2) A、 B两个发电厂共焚烧90吨的垃圾, A焚烧的垃圾不多于 B焚烧的垃圾两倍,求 A厂和 B厂总发电量的最大值.