综合与探究
如图,在平面直角坐标系中,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,直线 经过坐标原点 ,与抛物线的一个交点为 ,与抛物线的对称轴交于点 ,连接 ,已知点 , 的坐标分别为 , .
(1)求抛物线的函数表达式,并分别求出点 和点 的坐标;
(2)试探究抛物线上是否存在点 ,使 ?若存在,请直接写出点 的坐标;若不存在,请说明理由;
(3)若点 是 轴负半轴上的一个动点,设其坐标为 ,直线 与直线 交于点 ,试探究:当 为何值时, 是等腰三角形.
当前, “精准扶贫”工作已进入攻坚阶段, 凡贫困家庭均要“建档立卡” . 某初级中学七年级共有四个班, 已“建档立卡”的贫困家庭的学生人数按一、 二、 三、 四班分别记为 , , , ,现对 , , , 统计后, 制成如图所示的统计图 .
(1) 求七年级已“建档立卡”的贫困家庭的学生总人数;
(2) 将条形统计图补充完整, 并求出 所在扇形的圆心角的度数;
(3) 现从 , 中各选出一人进行座谈, 若 中有一名女生, 中有两名女生, 请用树状图表示所有可能情况, 并求出恰好选出一名男生和一名女生的概率 .
如图,抛物线 与 轴分别交于 , 两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点 ,作 垂直 轴于点 ,连接 ,且 , ,将 沿 轴向右平移 个单位,当点 落在抛物线上时,求 的值;
(3)在(2)的条件下,当点 第一次落在抛物线上记为点 ,点 是抛物线对称轴上一点.试探究:在抛物线上是否存在点 ,使以点 、 、 、 为顶点的四边形是平行四边形?若存在,请求出点 的坐标;若不存在,请说明理由.
如图, 是 的直径,点 在 的延长线上, 平分 交 于点 ,且 ,垂足为点 .
(1)求证:直线 是 的切线.
(2)若 , ,求弦 的长.
如图,一次函数 的图象与反比例函数 的图象交于点 , 两点.
(1)求一次函数与反比例函数的解析式;
(2)求 的面积.
如图,为了测量某条河的宽度,现在河边的一岸边任意取一点 ,又在河的另一岸边取两点 、 测得 , ,量得 长为100米.求河的宽度(结果保留根号).