如图1,在平面直角坐标系中,抛物线 与 轴交于 , 两点(点 在点 左侧),与 轴交于点 ,抛物线的顶点为点 .
(1)判断 的形状,并说明理由;
(2)经过 , 两点的直线交抛物线的对称轴于点 ,点 为直线 上方抛物线上的一动点,当 的面积最大时, 从点 出发,先沿适当的路径运动到抛物线的对称轴上点 处,再沿垂直于抛物线对称轴的方向运动到 轴上的点 处,最后沿适当的路径运动到点 处停止.当点 的运动路径最短时,求点 的坐标及点 经过的最短路径的长;
(3)如图2,平移抛物线,使抛物线的顶点 在射线 上移动,点 平移后的对应点为点 ,点 的对应点为点 ,将 绕点 顺时针旋转至△ 的位置,点 , 的对应点分别为点 , ,且点 恰好落在 上,连接 , ,△ 是否能为等腰三角形?若能,请求出所有符合条件的点 的坐标;若不能,请说明理由.
求不等式组 的解集,并把它们的解集在数轴上表示出来.
已知:如图,在四边形ABCD中, ,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.
在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:
某校师生捐书种类情况统计表
种类 |
频数 |
百分比 |
A.科普类 |
12 |
n |
B.文学类 |
14 |
35% |
C.艺术类 |
m |
20% |
D.其它类 |
6 |
15% |
(1)统计表中的m= ,n= ;
(2)补全条形统计图;
(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为 、 、 (正方形网格中每个小正方形的边长是1个单位长度).
(1)△A1B1C1是△ABC绕点 逆时针旋转 度得到的,B1的坐标是 ;
(2)求出线段AC旋转过程中所扫过的面积(结果保留π).
如图①,直线 交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记 ,求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.