游客
题文

小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

(1)温故:如图1,在ΔABC中,ADBC于点D,正方形PQMN的边QMBC上,顶点PN分别在ABAC上,若BC=6AD=4,求正方形PQMN的边长.

(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画ΔABC,在AB上任取一点P',画正方形P'Q'M'N',使Q'M'BC边上,N'ΔABC内,连结BN'并延长交AC于点N,画NMBC于点MNPNMAB于点PPQBC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.

(3)推理:证明图2中的四边形PQMN是正方形.

(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQEM(如图3).当tanNBM=34时,猜想QEM的度数,并尝试证明.

请帮助小波解决“温故”、“推理”、“拓展”中的问题.

科目 数学   题型 解答题   难度 中等
知识点: 相似三角形的判定与性质 相似形综合题 正方形的判定与性质
登录免费查看答案和解析
相关试题

(本题满分10分)已知:如图,平行四边形ABCD中,AB⊥AC,对角线AC、BD交于O点,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.

(1) 当旋转角为90°时,求证:四边形ABEF是平行四边形;
(2) 求证:在旋转过程中,AF=EC.

(本题满分10分) 如图,在△ABC中,已知AB=AC=5,AD平分∠BAC,E是AC边的中点.

(1)求DE的长;
(2)若AD的长为4,求△DEC的面积.

求x的值:
(1) ;(2) 8(x-1)3=27.

求下列各式的值:
(1) ;(2)

在平面直角坐标系中,点A的坐标为(-6, 6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.
(1)如图,连接OA,当AB=AC时,试说明:OA=OB.

(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号