游客
题文

小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

(1)温故:如图1,在ΔABC中,ADBC于点D,正方形PQMN的边QMBC上,顶点PN分别在ABAC上,若BC=6AD=4,求正方形PQMN的边长.

(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画ΔABC,在AB上任取一点P',画正方形P'Q'M'N',使Q'M'BC边上,N'ΔABC内,连结BN'并延长交AC于点N,画NMBC于点MNPNMAB于点PPQBC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.

(3)推理:证明图2中的四边形PQMN是正方形.

(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQEM(如图3).当tanNBM=34时,猜想QEM的度数,并尝试证明.

请帮助小波解决“温故”、“推理”、“拓展”中的问题.

科目 数学   题型 解答题   难度 中等
知识点: 相似三角形的判定与性质 相似形综合题 正方形的判定与性质
登录免费查看答案和解析
相关试题

已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.

某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).
(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);
(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;
(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系.

图a                    图b

如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长.

第23题图

甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.
  (1)求满足关于x的方程有实数解的概率.
(2)求(1)中方程有两个相同实数解的概率.

黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号