随着技术的发展,人们对各类产品的使用充满期待,某公司计划在某地区销售一款产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第为正整数)个销售周期每台的销售价格为元,与之间满足如图所示的一次函数关系.
(1)求与之间的关系式;
(2)设该产品在第个销售周期的销售数量为(万台),与的关系可以用来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?
如图,四边形A1OC1B1、A2C1C2B2、A3C2C3B3均为正方形,点A1、A2、A3和点C1、C2、C3分别在直线y=x+1和x轴上,求点C1和点B3的坐标.
如图,已知四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于E.求证:AC=CE.
解方程⑴
⑵
某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。其它主要参考数据如下:
运输工具 |
途中平均速度 (千米/时) |
运费 (元/千米) |
装卸费用 (元) |
火车 |
100 |
15 |
2000 |
汽车 |
80 |
20 |
900 |
(1)如果选择汽车的总费用比选择火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答。
(2)如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是A市水果批发部门的经理,要想将这种水果运往其他地区销售。你将选择哪种运输方式比较合算呢?
一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过18s,已知客车与货车的速度之比是5∶3,问两车每秒各行驶多少米?