如图,抛物线与轴交于点,点,且.
(1)求抛物线的解析式;
(2)点在抛物线上,且,求点的坐标;
(3)抛物线上两点,,点的横坐标为,点的横坐标为.点是抛物线上,之间的动点,过点作轴的平行线交于点.
①求的最大值;
②点关于点的对称点为,当为何值时,四边形为矩形.
交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A到B用时为2秒,这辆汽车是否超速?说明理由.
已知关于x的一元二次方程。
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.
先化简,再求值:,其中m是方程
的根.
已知:如图,为平行四边形ABCD的对角线,
为
的中点,
于点
,与
,
分别交于点
.求证:⑴
.⑵