如图,,为两个建筑物,两建筑物底部之间的水平地面上有一点,从建筑物的顶点测得点的俯角为,从建筑物的顶点测得点的俯角为,测得建筑物的顶点的俯角为.若已知建筑物的高度为20米,求两建筑物顶点、之间的距离(结果精确到,参考数据:,.
如图:在□ABCD中,∠BAD的平分线A E交DC于E,若∠DAE=25o,求∠C、∠B的度数.
如图,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直线l经过A,D两点,且sin∠DAB=
.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于AB,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.
(1)求腰BC的长;
(2)当Q在BC上运动时,求S与t的函数关系式;
(3)在(2)的条件下,是否存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的?若存在,请求出t的值;若不存在,请说明理由;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?
问题提出:如图①,将一张直角三角形纸片折叠,使点
与点
重合,这时
为折痕,
为等腰三角形;再继续将纸片沿
的对称轴
折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
知识运用:
(1)如图②,正方形网格中的能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的为一边,画出一个斜三角形
,使其顶点
在格点上,且
折成的“叠加矩形”为正方形;
(3)若一个锐角三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?结合图③,说明理由。
拓展应用:
(4)如果一个四边形一定能折成"叠加矩形",那么它必须满足的条件是什么?
学习了函数的知识后,数学活动小组到文具店调研一种进价为每支2元的活动笔的销售情况。调查后发现,每支定价3元,每天能卖出100支,而且每支定价每下降0.1元,其销售量将增加10支。但是物价局规定,该活动笔每支的销售利润不能超过其进价的40%。设每支定价x元,每天的销售利润为y元。
(1)求每天的销售利润为y与每支定价x之间的函数关系式;
(2)如果要实现每天75元的销售利润,那么每支定价应为多少元?
(3)当每支定价为多少元时,可以使这种笔每天的销售利润最大?
如图, △ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.