如图,是的直径,为上一点,连接,于点,是直径延长线上一点,且.
(1)求证:是的切线;
(2)若,,求的长.
如图,矩形 中,点 在边 上,将 沿 折叠,点 落在 边上的点 处,过点 作 交 于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若 , ,求四边形 的面积.
某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.
请根据图中信息,解决下列问题:
(1)两个班共有女生多少人?
(2)将频数分布直方图补充完整;
(3)求扇形统计图中 部分所对应的扇形圆心角度数;
(4)身高在 的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.
有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.
(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.
先化简,再求值: ,其中 是不等式组 的整数解.
如图,已知直线 与抛物线 相交于点 和点 两点.
(1)求抛物线 函数表达式;
(2)若点 是位于直线 上方抛物线上的一动点,以 、 为相邻的两边作平行四边形 ,当平行四边形 的面积最大时,求此时平行四边形 的面积 及点 的坐标;
(3)在抛物线 的对称轴上是否存在定点 ,使抛物线 上任意一点 到点 的距离等于到直线 的距离?若存在,求出定点 的坐标;若不存在,请说明理由.