病毒虽无情,人间有大爱.2020年,在湖北省抗击新冠病毒的战"疫"中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(不完整)和扇形统计图如下:(数据分成6组: , , , , , .
根据以上信息回答问题:
(1)补全频数分布直方图.
(2)求扇形统计图中派出人数大于等于100小于500所占圆心角度数.
据新华网报道,在支援湖北省的医务人员大军中,有"90后"也有"00后",他们是青春的力量,时代的脊梁.小华在收集支援湖北省抗疫宣传资料时得到这样一组有关"90后"医务人员的数据:
市派出的1614名医护人员中有404人是"90后";
市派出的338名医护人员中有103人是"90后";
市某医院派出的148名医护人员中有83人是"90后".
(3)请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,"90后"大约有多少万人?(写出计算过程,结果精确到0.1万人)
阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图正方形网格(每个小正方形边长为1)中画出格点△ABC,使,
;
小明同学的做法是:由勾股定理,得,
,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图中的正方形网格(每个小正方形边长为1)中画出格点△(
点位置如图所示),使
=
=5,
.(直接画出图形,不写过程);
(2)观察△ABC与△的形状,猜想∠BAC与∠
有怎样的数量关系,并证明你的猜想.
在云南大理坐落着美丽的大理三塔.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量三塔中一塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.
(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点,用测角仪测出看塔顶
的仰角
,在
点和塔之间选择一点
,测出看塔顶
的仰角
,然后用皮尺量出
.
两点的距离为
m,自身的高度为
m.请你利用上述数据帮助小华计算出塔的高度(
,结果保留整数).
(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影的长为
m(如图2),你能否利用这一数据设计一个测量方案?如果能,
请回答下列问题:
①在你设计的测量方案中,选用的测量工具是:;
②要计算出塔的高,你还需要测量哪些数据?.
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
为实现区域教育均衡发展,我市计划对某县、
两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所
类学校和两所
类学校共需资金230万元;改造两所
类学校和一所
类学校共需资金205万元.
(1)改造一所类学校和一所
类学校所需的资金分别是多少万元?
(2)若该县的类学校不超过5所,则
类学校至少有多少所?
(3)我市计划今年对该县、
两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到
、
两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
已知:如图,在平面直角坐标系中,直线AB分别与
轴交于点B、A,与反比例函数的图象分别交于点C、D,
轴于点E,
.
(1)求该反比例函数的解析式;
(2)求直线AB的解析式.