游客
题文

在平面直角坐标系 xOy 中,等腰直角 ΔABC 的直角顶点 C y 轴上,另两个顶点 A B x 轴上,且 AB = 4 ,抛物线经过 A B C 三点,如图1所示.

(1)求抛物线所表示的二次函数表达式.

(2)过原点任作直线 l 交抛物线于 M N 两点,如图2所示.

①求 ΔCMN 面积的最小值.

②已知 Q ( 1 , - 3 2 ) 是抛物线上一定点,问抛物线上是否存在点 P ,使得点 P 与点 Q 关于直线 l 对称,若存在,求出点 P 的坐标及直线 l 的一次函数表达式;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 轴对称的性质 二次函数的性质 一次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,将平行四边形ABCD的边DC延长至点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF;
(2)连接AC、BE,则当∠AFC与∠D满足什么条件时,四边形ABEC是矩形?请说明理由.

如图,已知A(a,m)、B(2a,n)是反比例函数y=(k>0)与一次函数y=-x+b图象上的两个不同的交点,分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,若已知1≤a≤2,则求S△OAB的取值范围.

如图,已知菱形AOBD的A、B、D三点在⊙O上,延长BO至点P,交⊙O于点C,且BP=3OB.
求证:AP是⊙O的切线.

为了预防流感,学校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比,燃烧后,y与x成反比(如图),现测得药物10min燃烧完,此时,教室内每立方米空气含药量为16mg.已知每立方米空气中含药量低于4mg时对人体无害,那么从消毒开始经多长时间后学生才能进教室?

如图,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.
(1)求∠CBD的度数;
(2)求下底AB的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号