如图,正比例函数的图象与反比例函数的图象交于点.点为轴正半轴上一点,过作轴的垂线交反比例函数的图象于点,交正比例函数的图象于点.
(1)求的值及正比例函数的表达式;
(2)若,求的面积.
某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:
抽取的学生最喜爱体育锻炼项目的统计表
类别 |
项目 |
人数(人 |
|
跳绳 |
59 |
|
健身操 |
▲ |
|
俯卧撑 |
31 |
|
开合跳 |
▲ |
|
其它 |
22 |
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.
解不等式: .
计算: .
在篮球比赛中,东东投出的球在点 处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点 .
(1)求该抛物线的函数表达式.
(2)当球运动到点 时被东东抢到, 轴于点 , .
①求 的长.
②东东抢到球后,因遭对方防守无法投篮,他在点 处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点 .东东起跳后所持球离地面高度 (传球前)与东东起跳后时间 满足函数关系式 ;小戴在点 处拦截,他比东东晚 垂直起跳,其拦截高度 与东东起跳后时间 的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点 ?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.