为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:进行调查,整理样本数据得到下面的频数分布表.
组别 |
用电量分组 |
频数 |
1 |
50 |
|
2 |
100 |
|
3 |
34 |
|
4 |
11 |
|
5 |
1 |
|
6 |
1 |
|
7 |
2 |
|
8 |
1 |
根据抽样调查的结果,回答下列问题:
(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;
(2)估计该地1万户居民六月份的用电量低于的大约有多少户.
已知关于的方程
有实根.
(1)求的值;
(2)若关于的方程
的所有根均为整数,求整数
的值
在平面直角坐标系xOy中,已知抛物线的对称轴是
,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.
在平面直角坐标系xOy中,反比例函数的图象与抛物线
交于点A(3, n).
(1)求n的值及抛物线的解析式;
(2) 过点A作直线BC,交x轴于点B,交反比例函数(
)的图象于点C,且AC=2AB,求B、C两点的坐标;
(3)在(2)的条件下,若点P是抛物线对称轴上的一点,且点P到x轴和直线BC的距离相等,求点P的坐标.
如图,在△ABC中,∠C=60°,BC=4,AC=,点P在BC边上运动,PD∥AB,交AC于D. 设BP的长为x,△APD的面积为y .
(1)求AD的长(用含x的代数式表示);
(2)求y与x之间的函数关系式,并回答当x取何值时,y的值最大?最大值是多少?
(3)点P是否存在这样的位置,使得△ADP的面积是△ABP面积的?若存在,请求出BP的长;若不存在,请说明理由.
如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC是一个格点三角形.
(1)请你在第一象限内画出格点△AB1C1, 使得△AB1C1∽△ABC,且△AB1C1与△ABC的相似比为3:1;
(2)写出B1、C1两点的坐标.