(1)如图①,点 在 上,点 在 上, , .求证: .
(2)如图②, 为 上一点,按以下步骤作图:
①连接 ;
②以点 为圆心, 长为半径作弧,交 于点 ;
③在射线 上截取 ;
④连接 .
若 ,求 的半径.
下面是4×4的正方形方格图形,如图所示.在A点有一只蚂蚁沿格线(虚线)爬行到B点,爬行路径正好把大正方形分割成全等的两个图形.请在图的a、b、c三个4×4正方形方格中分别画出三种不同的走法,把每个大正方形都分成两个全等图形.
如图所示,已知在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AB=13 cm,BC="12" cm,AC="5" cm,小明说利用面积关系就能求出CD的长.请你帮他求出CD的长.
如图所示,A、B、C、D四个村庄准备合建一个自来水水池,要求由水池向四村铺设的水管最省.设计人员建议把水池建在AC、BD的交点P处最好,你能解释其中的道理吗?
图是某房间木地板的一个图案,其中AB=BC=CD=DA,AE=CE=CF=FA.图案由深色的全等三角形木块(阴影部分)和浅色的全等三角形木块(无阴影部分)拼成,这个图案的面积是0.05m2.若房间的面积是13m2,问最少需要深色木块和浅色木块各多少块?
勤于思考的小聪,正在思考这样的一个问题:三角形的三条高线、三条角平分线、三条中线都分别交于一点,哪种线的交点有时在三角形内、有时在三角形外;哪种线的交点始终在三角形的内部?你能解答小聪这个问题吗?请你通过作图来解答这个问题.(需指明什么样的三角形)