游客
题文

如图①,在 ΔABC 中, ABC = 90 ° AB = 4 BC = 3 .点 P 从点 A 出发,沿折线 AB - BC 以每秒5个单位长度的速度向点 C 运动,同时点 D 从点 C 出发,沿 CA 以每秒2个单位长度的速度向点 A 运动,点 P 到达点 C 时,点 P D 同时停止运动.当点 P 不与点 A C 重合时,作点 P 关于直线 AC 的对称点 Q ,连结 PQ AC 于点 E ,连结 DP DQ .设点 P 的运动时间为 t 秒.

(1)当点 P 与点 B 重合时,求 t 的值.

(2)用含 t 的代数式表示线段 CE 的长.

(3)当 ΔPDQ 为锐角三角形时,求 t 的取值范围.

(4)如图②,取 PD 的中点 M ,连结 QM .当直线 QM ΔABC 的一条直角边平行时,直接写出 t 的值.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形 几何变换综合题
登录免费查看答案和解析
相关试题

已知等腰中,平分点,在线段上任取一点点除外),过点作,分别交点,作,交点,连结
(1)求证:四边形为菱形;
(2)当点在何处时,菱形的面积为四边形面积的一半?

如图1,线段过圆心,交圆两点,切圆于点,作,垂足为,连结
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线变为图2中割线的情形,与圆交于两点,交于点,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:

蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:

上市时间(月份)
1
2
3
4
5
6
市场售价(元/千克)
10.5
9
7.5
6
4.5
3

这种蔬菜每千克的种植成本(元/千克)与上市时间(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价(元/千克)关于上市时间(月份)的函数关系式;
(2)若图中抛物线过点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)

如图,某居民小区内两楼之间的距离米,两楼的高都是20米,楼在楼正南,楼窗户朝南.楼内一楼住户的窗台离小区地面的距离米,窗户高米.当正午时刻太阳光线与地面成角时,楼的影子是否影响楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.
(参考数据:

为改善办学条件,北海中学计划购买部分品牌电脑和品牌课桌.第一次,用9万元购买了品牌电脑10台和品牌课桌200张.第二次,用9万元购买了品牌电脑12台和品牌课桌120张.
(1)每台品牌电脑与每张品牌课桌的价格各是多少元?
(2)第三次购买时,销售商对一次购买量大的客户打折销售.规定:一次购买品牌电脑35台以上(含35台),按九折销售,一次购买品牌课桌600张以上(含600张),按八折销售.学校准备用27万元购买电脑和课桌,其中电脑不少于35台,课桌不少于600张,问有几种购买方案?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号