如图,在平面直角坐标系中,抛物线 与 轴正半轴交于点 ,且点 的坐标为 ,过点 作垂直于 轴的直线 . 是该抛物线上的任意一点,其横坐标为 ,过点 作 于点 , 是直线 上的一点,其纵坐标为 .以 , 为边作矩形 .
(1)求 的值.
(2)当点 与点 重合时,求 的值.
(3)当矩形 是正方形,且抛物线的顶点在该正方形内部时,求 的值.
(4)当抛物线在矩形 内的部分所对应的函数值 随 的增大而减小时,直接写出 的取值范围.
已知长方形的长为(3a+4b),宽比长短(b─a),设长方形的周长为C.
(1)用含a,b的代数式表示C;
(2)若,求C的值.
已知有如下六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.
先化简,再求值:,其中m为最大的负整数.
如图,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线
与x轴交于另一点A,线段BC与抛物线的对称轴l相交于点D,设抛物线的顶点为P,连接AD,线段AD与y轴相交于点E.
(1)求该抛物线的解析式及对称轴;
(2)连结AP,请在y轴正半轴上找一点Q,使Q、C、D为顶点的三角形与△ADP全等,并求出点Q的坐标.将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴l相交于点N,若2DM=DN,求点M的坐标.
某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:
x(件) |
… |
5 |
10 |
15 |
20 |
… |
y(元/ 件) |
… |
75 |
70 |
65 |
60 |
… |
(1)由题意知商品的最低销售单价是 元,当销售单价不低于最低销售价时,y是x的一次函数.y与x的函数关系式是 .
(2)当销售单价为多少元时,所获销售利润最大,最大利润是多少元?