如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,直线 经过 , 两点.
(1)直接写出二次函数的解析式 ;
(2)平移直线 ,当直线 与抛物线有唯一公共点 时,求此时点 的坐标;
(3)过(2)中的点 作 轴,交 轴于点 .若点 是抛物线上一个动点,点 是 轴上一个动点,是否存在以 , , 三点为顶点的直角三角形(其中 为直角顶点)与 相似?如果存在,请直接写出满足条件的点 的个数和其中一个符合条件的点 的坐标;如果不存在,请说明理由.
先化简,再从−2,0,1,2中选择一个合适的数代入,求出这个代数式的值.
解方程组:
计算:.
如图,正方形ABCD的顶点A、B分别在y轴和x轴上,且A点的坐标为(0,1),正方形的边长为.
(1) 直接写出D、C两点的坐标;
(2)求经过A、D、C三点的抛物线的关系式;
(3)若正方形以每秒个单位长度的速度匀速沿射线
下滑,直至顶点
落在
轴上时停止.设正方形落在
轴下方部分的面积为S,求S关于滑行时间
的函数关系式,并写出相应自变量
的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,到顶点落在
轴上时,求抛物线上
两点间的抛物线弧所扫过的面积.
△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.
(1) 证明:△BDG≌△CEF;
(2) 设△ABC的边长为2,请你帮小聪求出正方形的边长.(结果精确到十分位)
(3) 小颖想:不求正方形的边长我也能画出正方形.具体作法是:如图3
①在AB边上任取一点G′,如图作正方形G′D′E′F′;
②连接BF′并延长交AC于F;
③作FE∥F′E′交BC于E,FG∥F′G′交AB于G,GD∥G′D′交BC于D,则四边形DEFG即为所求.你认为小颖的作法正确吗?请说明理由.