如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.
(1)求点E,F的坐标;
(2)求经过E,F,G三点的抛物线的解析式;
(3)当点C的对应点落在直线l上时,求CD的长;
(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点A(2,2)
(1)求a的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,请说明理由.
已知:如图,在平面直角坐标系中,直线
与
轴交于点
,与反比例函数在第一象限内的图象交于点
,连结
,若
.求该反比例函数的解析式和直线
的解析式.
已知,求
的值.
计算:
已知:如图,抛物线(
)与
轴交于点
( 0,4) ,与
轴交于点
,
,点
的坐标为(4,0).
(1) 求该抛物线的解析式;
(2) 点是线段
上的动点,过点
作
∥
,交
于点
,连接
. 当
的面积最大时,求点
的坐标;
(3)若平行于轴的动直线与该抛物线交于点
,与直线
交于点
,点
的坐标为(2,0). 问: 是否存在这样的直线,使得
是等腰三角形?若存在,请求出点
的坐标;若不存在,请说明理由.