(·黑龙江绥化)自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如:等 。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
(1)若a>0 ,b>0 ,则>0;若a<0 ,b<0,则
>0;
(2)若a>0 ,b<0 ,则<0 ;若a<0,b>0 ,则
<0。
反之:(1)若>0则
(2)若<0 ,则__________或_____________.
根据上述规律,求不等式 的解集。
在平面直角坐标系中,已知三个顶点的坐标分别为
(1)画出,并求出
所在直线的解析式。
(2)画出绕点
顺时针旋转
后得到的
,并求出
在上述旋转过程中扫过的面积。
如图,是平行四边形
的对角线
上的点,
,请你猜想:线段
与线段
有怎样的关系?并对你的猜想加以证明。
我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应
展开式中的系数;第四行的四个数1,3,3,1,恰好对应着
展开式中的系数等等。
(1)根据上面的规律,写出的展开式。
(2)利用上面的规律计算:
计算:
如图,抛物线与轴交于
(
,0)、
(
,0)两点,且
,与
轴交于点
,其中
是方程
的两个根。
(1)求抛物线的解析式;
(2)点是线段
上的一个动点,过点
作
∥
,交
于点
,连接
,当
的面积最大时,求点
的坐标;
(3)点在(1)中抛物线上,点
为抛物线上一动点,在
轴上是否存在点
,使以
为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点
的坐标,若不存在,请说明理由。