国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 |
频数 |
频率 |
一等奖 |
10 |
0.05 |
二等奖 |
20 |
0.10 |
三等奖 |
30 |
b |
优胜奖 |
a |
0.30 |
鼓励奖 |
80 |
0.40 |
请根据所给信息,解答下列问题:
(1)a= ,b= ,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF⊥AB,垂足为F.
(1)求证:AD=DB;
(2)设CE=x,BF=y,求y关于x的函数解析式;
(3)当∠DEF=90°时,求BF的长?
如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,BC=6.求点D到AB边的距离.
如图,在Rt△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上.
(1)如图1,如果AM=AN,求证:BM=CN;
(2)如图2,如果M、N是边BC上任意两点,并满足∠MAN=45°,那么线段BM、MN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,请证明;如果不成立,请说明理由.
如图,在等腰梯形ABCD中,AD∥BC,AC平分∠BCD,已知AD=5cm,BC=9cm,
求等腰梯形ABCD的周长.
如图,四边形ABCD中,∠ABC=∠ADC=90°,E是对角线AC的中点,连接BE、DE
(1)若AC=10,BD=8,求△BDE的周长;
(2)判断△BDE的形状,并说明理由.