海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg |
箱产量≥50kg |
|
旧养殖法 |
||
新养殖法 |
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
|
0.050 |
0.010 |
0.001 |
K |
3.841 |
6.635 |
10.828 |
.
(本小题满分10分)已知圆过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,
是否为一定值?请证明你的结论.
【原创】在三棱锥P-ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
(本小题满分12分)已知函数部分图象如图所示.
(1)求函数的解析式;
(2)当时,求函数
的值域.
【改编】(本小题满分13分)已知函数.
(1)求函数的单调区间;
(2)当时,
,求实数
的取值范围.
【原创】(本小题满分13分)已知椭圆的离心率为
,椭圆的短轴端点与双曲线
的焦点重合,过点
且不垂直于
轴的直线
与椭圆
相交于
两点.
(1)求椭圆的方程;
(2)求的取值范围.