已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△ CFE中, CF=6, CE=12,∠ FCE=45°,以点 C为圆心,以任意长为半径作 AD ⏜ ,再分别以点 A和点 D为圆心,大于 1 2 AD长为半径作弧,交 EF于点 B, AB∥ CD.
(1)求证:四边形 ACDB为△ FEC的亲密菱形;
(2)求四边形 ACDB的面积.
已知:如图, A、B、C、D四点在同一直线上,AB=CD,AE∥BF且AE=BF. 求证: EC=FD.
解方程:.
先化简,再求值:,其中.
计算: .
如图,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B左侧),与y轴交于点C(0,-3),且抛物线的对称轴是直线x=1. (1)求b的值; (2)点E是y轴上一动点,CE的垂直平分线交y轴于点F,交抛物线于P、Q两点,且点P在第三象限.当线段PQ = AB时,求点E的坐标; (3)若点M在射线CA上运动,过点M作MN⊥y轴,垂足为N,以M为圆心,MN为半径作⊙M,当⊙M与x轴相切时,求⊙M的半径.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号