某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.
(1)求OD的长;
(2)求CD的长.
在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:
小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;
小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.
(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;
(2)分别求出小明和小强两次摸球的标号之和等于5的概率.
如图①、②,在平面直角坐标系中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与轴于O,B两点,OC为弦,∠AOC=60°,P是
轴上的一动点,连结CP.
(1)求的度数;
(2)如图①,当与⊙A相切时,求
的长;
(3)如图②,当点在直径
上时,
的延长线与⊙A相交于点
,问
为何值时,
是等腰三角形?
要在一块长16m,宽12m的矩形荒地上建一个花园,要求花地的面积占荒地面积的一半,图23-①、图23-②分别是小明和小红设计的两种不同方案图.
小明:我设计方案如图23-①,花园四周小路宽相同;
小红:我设计方案如图23-②,圆与半圆的半径相同.
请你分别求出小明设计图中的道路宽及小红设计图中的半径长.(π取近似数3)
如图,⊙A经过原点O,并与两坐标轴分别相交于B、C两点,已知∠ODC=45°,点B的坐标为(0,4).
(1)求点C的坐标;
(2)求阴影部分的面积S.