如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC: 交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求 AM+CM它的最小值.
如图,在平面直角坐标系中,已知点,反比例函数
的图像经过点A,动直线
与反比例函数的图像交于点M,与直线AB交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若,求t的值.
如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.
(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
如图,已知.
求证:.
某校为了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组
(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两个不完整的统计图.
解答下列问题:
(1)这次抽样调查的样本容量是,并不全频数分布直方图;
(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;
(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?