在平面直角坐标系中,已知抛物线 的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.
(1)填空:b= ,c= ,直线AC的解析式为 ;
(2)直线 与x轴相交于点H.
①当 时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若 ,求出此时点D的坐标;
②当 时(如图2),直线 与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为 ,求此时t的值.
如图,在 中, ,以 为直径的 分别交线段 , 于点 , ,过点 作 ,垂足为 ,线段 , 的延长线相交于点 .
(1)求证: 是 的切线;
(2)若 , ,求图中阴影部分的面积.
在一次课外实践活动中,同学们要测量某公园人工湖两侧 , 两个凉亭之间的距离.如图,现测得 , , 米,请计算 , 两个凉亭之间的距离(结果精确到1米)(参考数据: ,
在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.
(1)求甲、乙两种门票每张各多少元?
(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?
某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中, 的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
如图,已知二次函数 的图象交 轴于点 和点 ,交 轴于点 .
(1)求这个二次函数的表达式;
(2)若点 在第二象限内的抛物线上,求四边形 面积的最大值和此时点 的坐标;
(3)在平面直角坐标系内,是否存在点 ,使 , , , 四点构成平行四边形?若存在,直接写出点 的坐标;若不存在,说明理由.