游客
题文

如图,在平面直角坐标系中,抛物线 y x 2 + bx + c 经过点(﹣1,8)并与x轴交于点AB两点,且点B坐标为(3,0).

(1)求抛物线的解析式;

(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.

注:抛物线 y a x 2 + bx + c a 0 的顶点坐标是 - b 2 a , 4 ac - b 2 4 a

科目 数学   题型 解答题   难度 中等
知识点: 二次函数的性质 待定系数法求二次函数解析式 抛物线与x轴的交点
登录免费查看答案和解析
相关试题

(11·湖州)(本小题6分)因式分解:a3-9a

如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1
y1)和N(x2,y2)两点(其中x1<0,x2<0)
(1)求b的值.
(2)求x1•x2的值
(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,
并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相
切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对
该特产的销售投资收益为:每投入x万元,可获得利润
当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,
可获利润
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为
点,BC=AF,延长DF与BA的延长线交于E.
(1)求证△ABD为等腰三角形.
(2)求证AC•AF=DF•FE.

如图,防洪大堤的横断面是梯形,背水坡AB的坡比(指坡面的铅直高度与水平宽度的比).且AB=20 m.身高为1.7 m的小明站在大堤A点,测得高压电线杆端点D的仰角为30°.已知地面CB宽30 m,求高压电线杆CD的高度(结果保留

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号