如图1,矩形ABCD中, , ,点E为AD上一定点,点F为AD延长线上一点,且 ,点P从A点出发,沿AB边向点B以2cm/s的速度运动,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当 时,△PAE的面积y(cm2)关于时间t(s)的函数图象如图2所示,连结PF,交CD于点H.
(1)t的取值范围为 ,AE= cm;
(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?并求出此时点P的运动时间t;
(3)如图4,当点P出发1s后,AD边上另一动点Q从E点出发,沿ED边向点D以1cm/s的速度运动,如果P,Q两点中的任意一点到达终点后,另一点也停止运动,连结PQ,QH.若 ,请问△PQH能否构成直角三角形?若能,请求出点P的运动时间t;若不能,请说明理由.
解方程-
=1
化简(1+
)÷
.
解不等式组:并把解集在数轴上表示出来。
如图1,一等腰直角三角尺GEF(∠EGF=90°,∠GEF=∠GFE=45°,GE=GF)的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN相等吗?并说明理由;
若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?请说明理由.
如图,在正方形网格上有一个△DEF。作△DEF关于直线HG的轴对称图形△ABC(不写作法);
作EF边上的高(不写作法);
若网格上的最小正方形边长为1,求△DEF的面积.