游客
题文

如图,已知抛物线 y a x 2 + bx + c a 0 经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点.

(1)求此抛物线的解析式;

(2)若把抛物线 y a x 2 + bx + c a 0 向下平移 13 3 个单位长度,再向右平移 n n 0 个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点Py轴上,且满足 OPA + OCA CBA ,求CP的长.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 相似三角形的判定与性质 二次函数综合题
登录免费查看答案和解析
相关试题

图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆 AB 垂直于地面 l ,活动杆 CD 固定在支撑杆上的点 E 处.若 AED = 48 ° BE = 110 cm DE = 80 cm ,求活动杆端点 D 离地面的高度 DF .(结果精确到 1 cm ,参考数据: sin 48 ° 0 . 74 cos 48 ° 0 . 67 tan 48 ° 1 . 11 )

解方程组: 2 x + y = 4 x - y = - 1

计算: | - 2 | + 12 - 3

如图,矩形 ABCD 中, AB = 4 ,点 E 是边 AD 的中点,点 F 是对角线 BD 上一动点, ADB = 30 ° .连结 EF ,作点 D 关于直线 EF 的对称点 P

(1)若 EF BD ,求 DF 的长;

(2)若 PE BD ,求 DF 的长;

(3)直线 PE BD 于点 Q ,若 ΔDEQ 是锐角三角形,求 DF 长的取值范围.

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号