如图,直线 与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限, .
(1)求△AOB的周长;
(2)设 ,试用含t的代数式表示点P的坐标;
(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记 ,若过点A的二次函数 同时满足以下两个条件:
① ;
②当 时,函数y的最大值等于 ,求二次项系数a的值.
某企业为手机产业基地提供手机配件,受人民币走高的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
价格y1(元/件) |
56 |
58 |
60 |
62 |
64 |
66 |
68 |
70 |
72 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为100元,生产每件配件的人力成本为5元,其它成本3元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足函数关系式
(10≤x≤12,且x取整数)。求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1月,每件配件的原材料价格比去年12月上涨6元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时1月份销售量在去年12月的基础上减少8a%,这样,在保证1月份上万件配件销量的前提下,完成了利润17万元的任务,请你计算出a的值。
某地为了了解当地推进“阳光体育”运动情况,就“中小学每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见表):
组别 |
范围(小时) |
A |
![]() |
B |
![]() |
C |
![]() |
D |
![]() |
请根据上述信息解答下列问题:
(1)B组的人数是人;
(2)本次调查数据(指体育活动时间)的中位数落在组内;
(3)若某地约有64000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有多少?
已知,在平面直角坐标系中,直线:
与直线
:
相交于点
.
(1)求的值;
(2)不解关于的方程组
,请你直接写出它的解。
暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?
如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:
(1)将点B向右移动三个单位长度后到达点D,点D表示的数是;
(2)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请你直接写出所有点A移动的距离和方向;
(3)若A、B、C三个点移动后得到三个互不相等的有理数,它们既可以表示为1,,
的形式,又可以表示为0,
,
的形式,试求
,
的值.