如图,在一条笔直的东西向海岸线 上有一长为 的码头 和灯塔 ,灯塔 距码头的东端 有 .一轮船以 的速度航行,上午 在 处测得灯塔 位于轮船的北偏西 方向,上午 在 处测得灯塔 位于轮船的北偏东 方向,且与灯塔 相距 .
(1)若轮船照此速度与航向航行,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据: ,
如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);
(2)求摸出的两张牌同为红色的概率.
二次函数的图象经过点A(3,0),B(2,-3),并且以
为对称轴.
(1)求此函数的解析式;
(2)在对称轴上是否存在一点P,使PA=PB,若存在,求出P点的坐标,若不存在,说明理由.
如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留).
先化简,再求值:,其中
.
如图,抛物线经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.