游客
题文

ΔABC 中, BAC = 90 ° AB = AC ,点 D 为直线 BC 上一动点(点 D 不与 B C 重合),以 AD 为边在 AD 右侧作正方形 ADEF ,连接 CF

(1)观察猜想

如图1,当点 D 在线段 BC 上时,

BC CF 的位置关系为:  

BC CD CF 之间的数量关系为:  ;(将结论直接写在横线上)

(2)数学思考

如图2,当点 D 在线段 CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点 D 在线段 BC 的延长线上时,延长 BA CF 于点 G ,连接 GE .若已知 AB = 2 2 CD = 1 4 BC ,请求出 GE 的长.

科目 数学   题型 解答题   难度 中等
知识点: 全等三角形的判定与性质 正方形的性质 四边形综合题 等腰直角三角形
登录免费查看答案和解析
相关试题

如图1,在□ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG与△ABC在射线AC的同侧,点G在射线AB上,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒.

(1)试求出当点G与点B重合时t的值;
(2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请求出S与t之间的函数表达式,并写出相应的自变量t的取值范围;
(3)当等边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由.

提出问题:
(1)如图1,在正方形ABCD中,点M,N分别在AB,BC上。连结AN,DM相交于点P,若AM=BN,求证:
类比探究:
(2)如图2,在正五边形ABCDE中,点M,N分别在AB,BC上,连结AN,EM相交于点P,若AM=BN,试求出的度数.
综合运用:
(3)如图3,在正六边形ABCDEF中,点M,N分别是AB,BC上的动点,点M从点A运动到点B,点N从点B运动到点C,并且保持AM=BN。连结AN,FM相交于点P,若,当点M从点A运动到点B时,试求出点P所经过的路径长.

大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:

x(天)
1
2
3

50
p(件)
118
116
114

20


销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时
(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数表达式.
(2)求该超市销售该新商品第x天获得的利润y元关于x的函数表达式.
(3)这50天中,该超市第几天获得利润最大?最大利润为多少?

如图,△ABC是等腰三角形,AB=BC,点D为BC的中点.

(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:
①过点B作AC的平行线BP;
②过点D作BP的垂线,分别交AC,BP,BQ于点E,F,G.
(2)在(1)所作的图中,连接BE,CF.求证:四边形BFCE是平行四边形.

菲尔兹奖(Fields Medal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.获奖者当年不能超过四十岁.对获奖者获奖时的年龄进行统计,整理成下面的表格和统计图.

年龄段(岁)
27≤x<29
29≤x<31
31≤x<33
33≤x<35
35≤x<37
37≤x<39
39≤x<41
频数(人)
1
2
7
5
a
b
c
频率
0.025



0.175

0.15


(1)直接写出a、b、c的值,并补全条形统计图;
(2)请问这组数据的中位数在哪一个年龄段中?
(3)在五位36岁的获奖者中有两位美国人,一位法国人和两位俄罗斯人.请用画树形图或列表的方法求出“从五位36岁的获奖者中随机抽出两人,刚好是不同国籍的人”(记作事件A)的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号