某学校为了增强学生体质,决定开设以下体育课外活动项目: 篮球、 乒乓球、 跳绳、 踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
如图,等边三角形ABC和等边三角形DEC,CE和AC重合,CE=AB,
(1)求证:AD=BE;
(2)若CE绕点C顺时针旋转30度,连BD交AC于点G,取AB的中点F连FG,求证:BE=2FG;
(3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)
某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.
(1)填表(不需要化简)
时间 |
第一个月 |
第二个月 |
清仓时 |
单价(元) |
80 |
40 |
|
销售量(件) |
200 |
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若等边三角形ABC的边长为4,求DF的长;
(3)求图中阴影部分的面积.
寒假期间,某校同学积极参加社区公益活动. 开学后,校团委随机选取部分学生对每人的“累计参与时间”进行了调查,将数据绘制成图1、图2. 请结合这两幅不完整的统计图解答下列问题:
(1)这次调查共选取了多少名学生?
(2)将图1的内容补充完整;
(3)求图2中“约15小时”对应的圆心角度数,并把图2的内容补充完整;
(4)若该校共有学生680人,估计这个寒假有多少学生参加了社区公益活动?
已知:如图,在□ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.
求证:(1)△ABE≌△CDF;(2)BE∥DF.