游客
题文

如图,在 Rt Δ ABC 中, ABC = 90 ° AC 的垂直平分线分别与 AC BC AB 的延长线相交于点 D E F O ΔBEF 的外接圆, EBF 的平分线交 EF 于点 G ,交 O 于点 H ,连接 BD FH

(1)试判断 BD O 的位置关系,并说明理由;

(2)当 AB = BE = 1 时,求 O 的面积;

(3)在(2)的条件下,求 HG · HB 的值.

科目 数学   题型 解答题   难度 中等
知识点: 圆周角定理 相似三角形的判定与性质 三角形的外接圆与外心 直线与圆的位置关系 全等三角形的判定与性质 线段垂直平分线的性质 直角三角形的性质
登录免费查看答案和解析
相关试题

⑴计算:
⑵解方程:.

平面内的两条直线有相交和平行两种位置关系(本题6分)

(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需说明理由)
(3)求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.(简述理由)

如图:用两个边长为a、b、c的直角三角形和一个边长为c的等腰直角三角形拼成一个直角梯形,试用不同的方法计算这个图形的面积。(本题6分)

(1)你能得到关于a,b,c的一个等式吗?写出你的过程。
(2)请用一句话描述你的发现:在直角三角形中,
(3)请应用你学到的新知识解决下面这个问题:将一根长为30cm的筷子置于底面直径为5cm,高12cm的圆柱形的空水杯中,则露出杯子外面的长度最短是____cm ,最长是____ cm.如果把圆柱体换成一个长,宽,高分别为6,8,24的无盖长方体盒子。那么这根筷子露出盒子外面的长度最短是____cm

如图,AD为△ABC的中线,BE为△ABD的中线。解决下列问题(本题5分)

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作△BED中BD边上的高EF;
(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高EF为多少?

已知:的和为零,先化简再求值:
(本题4分)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号