游客
题文

如图,已知二次函数 y = a x 2 + 2 x + c 的图象经过点 C ( 0 , 3 ) ,与 x 轴分别交于点 A ,点 B ( 3 , 0 ) .点 P 是直线 BC 上方的抛物线上一动点.

(1)求二次函数 y = a x 2 + 2 x + c 的表达式;

(2)连接 PO PC ,并把 ΔPOC 沿 y 轴翻折,得到四边形 POP ' C .若四边形 POP ' C 为菱形,请求出此时点 P 的坐标;

(3)当点 P 运动到什么位置时,四边形 ACPB 的面积最大?求出此时 P 点的坐标和四边形 ACPB 的最大面积.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

将抛物线c1y=沿x轴翻折,得到抛物线c2,如图所示.

(1)请直接写出抛物线c2的表达式;
(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为AB;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴的交点从左到右依次为DE.
①用含m的代数式表示点A和点E的坐标;
②在平移过程中,是否存在以点AME为顶点的三角形是直角三角形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

已知:如图,在四边形ABCD中,BC<DC,∠BCD=60º,∠ADC=45º,CA平分∠BCD,求四边形ABCD的面积.

如图,AD为⊙O的直径,作⊙O的内接等边三角形ABC.黄皓、李明两位同学的作法分别是:

黄皓:1. 作OD的垂直平分线,交⊙OBC两点,
2. 连结ABAC,△ABC即为所求的三角形.
李明:1. 以D为圆心,OD长为半径作圆弧,交⊙OBC两点,
2. 连结ABBCCA,△ABC即为所求的三角形.
已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC是等边三角形.

(6分) 如图是黄金海岸的沙丘滑沙场景.已知滑沙斜坡AC的坡度是,在与滑沙坡底C距离20米的D处,测得坡顶A的仰角为26.6°,且点DCB在同一直线上,求滑坡的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).

在平面直角坐标系xOy中,二次函数的图象过A(-1,-2)B(1,0)两点.

(1)求此二次函数的解析式;
(2)点x轴上的一个动点,过点Px轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号