如图,在 中, , ,点 为 的中点, ,将 绕点 顺时针旋转 度 ,角的两边分别交直线 于 、 两点,设 、 两点间的距离为 , , 两点间的距离为 .
小涛根据学习函数的经验,对函数 随自变量 的变化而变化的规律进行了探究.
下面是小涛的探究过程,请补充完整.
(1)列表:下表的已知数据是 , 两点间的距离 进行取点、画图、测量,分别得到了 与 的几组对应值:
|
0 |
0.30 |
0.50 |
1.00 |
1.50 |
2.00 |
2.50 |
|
3.00 |
3.50 |
3.68 |
3.81 |
3.90 |
3.93 |
4.10 |
|
|
2.88 |
2.81 |
2.69 |
2.67 |
2.80 |
3.15 |
|
3.85 |
5.24 |
6.01 |
6.71 |
7.27 |
7.44 |
8.87 |
请你通过计算,补全表格;
(2)描点、连线,在平面直角坐标系 中,描出表格中各组数值所对应的点 ,并画出函数 关于 的图象.
(3)探究性质:随着自变量 的不断增大,函数 的变化趋势: .
(4)解决问题:当 时, 的长度大约是 .(保留两位小数).
如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c与x轴相交于A、B两点.
(1)试求点A、C的坐标;
(2)求抛物线的解析式;
(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.
如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.
(1)求证:FB为⊙O的切线;
(2)若AB=8,CE=2,求sin∠F.
如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).
(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;
(2)试根据图象写出不等式≥kx的解集;
(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.
如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.
(1)求证:△ABC≌△DCE;
(2)若AC=BC,求证:四边形ACED为菱形.
某地要在规定的时间内安置一批居民,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务,问要安置多少户居民?规定时间为多少个月?(列方程(组)求解)