游客
题文

如图,抛物线 y = x 2 + bx + c x 轴交于点 A ( 2 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C

(1)求抛物线的表达式;

(2)作射线 AC ,将射线 AC 绕点 A 顺时针旋转 90 ° 交抛物线于另一点 D ,在射线 AD 上是否存在一点 H ,使 ΔCHB 的周长最小.若存在,求出点 H 的坐标;若不存在,请说明理由;

(3)在(2)的条件下,点 Q 为抛物线的顶点,点 P 为射线 AD 上的一个动点,且点 P 的横坐标为 t ,过点 P x 轴的垂线 l ,垂足为 E ,点 P 从点 A 出发沿 AD 方向运动,直线 l 随之运动,当 2 < t < 1 时,直线 l 将四边形 ABCQ 分割成左右两部分,设在直线 l 左侧部分的面积为 S ,求 S 关于 t 的函数表达式.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 二次函数图象与系数的关系 二次函数综合题
登录免费查看答案和解析
相关试题

解不等式组: 3 x - 5 < x + 1 2 ( 2 x - 1 ) 3 x - 4 ,并把它的解集在数轴上表示出来.

计算: (2- 3 )(2+ 3 )+tan60°- ( π - 2 3 ) 0

如图1,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴的交点 A ( - 3 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为 D

(1)求该抛物线的解析式;

(2)连接 AD DC CB ,将 ΔOBC 沿 x 轴以每秒1个单位长度的速度向左平移,得到△ O ' B ' C ' ,点 O B C 的对应点分别为点 O ' B ' C ' ,设平移时间为 t 秒,当点 O ' 与点 A 重合时停止移动.记△ O ' B ' C ' 与四边形 AOCD 重合部分的面积为 S ,请直接写出 S t 之间的函数关系式;

(3)如图2,过该抛物线上任意一点 M ( m , n ) 向直线 l : y = 9 2 作垂线,垂足为 E ,试问在该抛物线的对称轴上是否存在一点 F ,使得 ME - MF = 1 4 ?若存在,请求出 F 的坐标;若不存在,请说明理由.

背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点 E A D 在同一条直线上),发现 BE = DG BE DG

小组讨论后,提出了下列三个问题,请你帮助解答:

(1)将正方形 AEFG 绕点 A 按逆时针方向旋转(如图 1 ) ,还能得到 BE = DG 吗?若能,请给出证明;若不能,请说明理由;

(2)把背景中的正方形分别改成菱形 AEFG 和菱形 ABCD ,将菱形 AEFG 绕点 A 按顺时针方向旋转(如图 2 ) ,试问当 EAG BAD 的大小满足怎样的关系时,背景中的结论 BE = DG 仍成立?请说明理由;

(3)把背景中的正方形分别改写成矩形 AEFG 和矩形 ABCD ,且 AE AG = AB AD = 2 3 AE = 4 AB = 8 ,将矩形 AEFG 绕点 A 按顺时针方向旋转(如图 3 ) ,连接 DE BG .小组发现:在旋转过程中, D E 2 + B G 2 的值是定值,请求出这个定值.

端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.

(1)肉粽和蜜枣粽的进货单价分别是多少元?

(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号