如图,四边形 是边长为4的正方形,点 为 边上任意一点(与点 、 不重合),连接 ,过点 作 交 于点 ,且 ,过点 作 ,交 于点 ,连接 、 ,设 .
(1)求点 的坐标(用含 的代数式表示);
(2)试判断线段 的长度是否随点 的位置的变化而改变?并说明理由.
(3)当 为何值时,四边形 的面积最小;
(4)在 轴正半轴上存在点 ,使得 是等腰三角形,请直接写出不少于4个符合条件的点 的坐标(用含 的式子表示).
2021年,达州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为 的河床斜坡边,斜坡 长为48米,在点 处测得桥墩最高点 的仰角为 , 平行于水平线 , 长为 米,求桥墩 的高(结果保留1位小数). , , ,
如图,在平面直角坐标系中, 的顶点坐标分别是 , , .
(1)将 以 为旋转中心旋转 ,画出旋转后对应的△ ;
(2)将 平移后得到△ ,若点 的对应点 的坐标为 ,求△ 的面积.
为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)这次抽样调查的总人数为 人,扇形统计图中“舞蹈”对应的圆心角度数为 ;
(2)若该校有1400名学生,估计选择参加书法的有多少人?
(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,根据画树状图或表格法求恰为一男一女的概率.
化简求值: ,其中 与2,3构成三角形的三边,且 为整数.
计算: .