游客
题文

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

科目 数学   题型 解答题   难度 中等
知识点: 直线与圆的位置关系 等腰三角形的性质 直角三角形的性质
登录免费查看答案和解析
相关试题

(年贵州省铜仁市)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.

(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.

(年贵州省贵阳市)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.

(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)

(年贵州省毕节)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.

(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.

(年贵州省贵阳市)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.

(1)四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)

(年云南省)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.

(1)求证:∠PNM=2∠CBN;
(2)求线段AP的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号