游客
题文

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

科目 数学   题型 解答题   难度 中等
知识点: 直线与圆的位置关系 等腰三角形的性质 直角三角形的性质
登录免费查看答案和解析
相关试题

计算:
(1)用公式法解方程:x2+3x-2=0
(2)已知a2+a=0,请求出代数式的值.

我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设
特例探索
(1)如图1,当∠=45°,时,=
如图2,当∠=30°,时,=

归纳证明
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG, AD= ,AB=3.求AF的长.

如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图象的顶点分别为M,N , 与轴分别交于点E, F.

(1) 函数的最小值为
当二次函数L1 ,L2值同时随着的增大而减小时,的取值范围是
(2)当时,求的值,并判断四边形的形状(直接写出,不必证明);
(3)若二次函数L2的图象与轴的右交点为,当△为等腰三角形时,求方程的解.

九(1)班数学兴趣小组经过市场调查,整理出某种商品在第(1≤≤90)天的售价与销量的相关信息如下表:

时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200﹣2x

已知该商品的进价为每件30元,设销售该商品的每天利润为元.
(1)求出的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

如图,中,,动点从点出发,在边上以每秒的速度向点匀速运动,同时动点从点出发,在边上以每秒的速度向点匀速运动,运动时间为秒(),连接

(1)若相似,求的值;
(2)连接,若,求的值

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号