如图, 的圆心 , 经过坐标原点 ,与 轴交于点 .经过点 的一条直线 解析式为: 与 轴交于点 ,以 为顶点的抛物线经过 轴上点 和点 .
(1)求抛物线的解析式;
(2)求证:直线 是 的切线;
(3)点 为抛物线上一动点,且 与直线 垂直,垂足为 ; 轴,交直线 于点 ,是否存在这样的点 ,使 的面积最小.若存在,请求出此时点 的坐标及 面积的最小值;若不存在,请说明理由.
某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会?
x2+5x+1=0.
.
.
已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(21,0),C(0,6),动点D在线段AO上从点A以每秒2个单位向点O运动,动点P在线段BC上从点C以每秒1个单位向点B运动.若点D点P同时运动,当其中一个动点到达线段另一个端点时,另一个动点也随之停止.
(1)求点B的坐标;
(2)设点P运动了t秒,用含t的代数式表示△ODP的面积S;
(3)当P点运动某一点时,是否存在使△ODP为直角三角形,若存在,求出点P的坐标,若不存在说明理由.