如图,有一铁塔 ,为了测量其高度,在水平面选取 , 两点,在点 处测得 的仰角为 ,距点 的10米 处测得 的仰角为 ,且 、 、 在同一水平直线上,求铁塔 的高度(结果精确到0.1米,
如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,
)
我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:
(1)填空:
甲种收费方式的函数关系式是y1= ;
乙种收费方式的函数关系式是y2= ;
(2)如果我校2014-2015学年八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.
若方程组的解是
,求(a+b)2-(a-b)(a+b).
在平面直角坐标系中,点A的坐标为(0,1),抛物线y=ax2+bx+c的顶点为坐标原点O,且与直线y=2x-4有唯一交点B.
(1)抛物线的函数表达式为 ;
(2)如图1,设直线y=2x-4与y轴交于点D,点P是抛物线上一点.
①过点P作PE∥y轴,交直线BD于点E,若△ADE与△ABD相似,求点P的坐标;
②将△ABD沿直线BD折叠后,点A落在点C处(图2),是否存在点P,使得S△PCD=3S△PAB?如果存在,请求出所有满足条件的点P的坐标;如果不存在,请说明理由.
如图,已知直线y=3x+3与x轴交于点A,与y轴交于点D,与直线y=x交于点E.过点D作DC∥x轴,交直线y=
x于点C,过点C作CB∥AD交x轴于点B.
(1)点C的坐标是 ;
(2)以线段AD的中点M为圆心作⊙M,当⊙M与直线CE相切时,求⊙M的半径;
(3)如图2,点P从点O出发,沿线段OC向终点C运动,点Q从点C出发,沿线段CD向终点D运动.若P、Q两点同时出发,速度均为1单位长度/s,时间为t/s.当p、q两点有一点到达终点时,它们均停止运动.将线段PQ绕点P沿顺时针方向旋转90°.当点Q落在四边形ABCD一边所在的直线上时,t的值为 .