游客
题文

如图,已知抛物线 y = x 2 + bx + c x 轴交于点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 BC 交抛物线的对称轴于点 E D 是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点 C 和点 D 的坐标;

(3)若点 P 在第一象限内的抛物线上,且 S ΔABP = 4 S ΔCOE ,求 P 点坐标.

注:二次函数 y = a x 2 + bx + c ( a 0 ) 的顶点坐标为 ( b 2 a 4 ac b 2 4 a )

科目 数学   题型 解答题   难度 中等
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,在□ABCD中,DE平分∠ADC,EF//AD,求证:四边形AEFD是菱形。

计算
(1)
(2)
(3)
(4)

在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.

(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.

知识迁移:
时,因为,所以,从而(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为
直接应用:
已知函数与函数, 则当_________时,取得最小值为_________.变形应用:
已知函数与函数,求的最小值,并指出取得该最小值时相应的的值.
实际应用:
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设该汽车一次运输的路程为千米,求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

猜想与证明:
如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号