游客
题文

如图①,抛物线y=-18x2+12x+4y轴交于点A,与x轴交于点BC,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D

(1)求直线AD的函数解析式;

(2)如图②,若点P是直线AD上方抛物线上的一个动点

①当点P到直线AD的距离最大时,求点P的坐标和最大距离;

②当点P到直线AD的距离为524时,求sinPAD的值.

科目 数学   题型 解答题   难度 较难
知识点: 解直角三角形 待定系数法求一次函数解析式 翻折变换(折叠问题) 二次函数综合题
登录免费查看答案和解析
相关试题

某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变)。
(1)从运输开始,每天运输的货物吨数(单位:吨)与运输时间(单位:天)之间有怎样的函数关系式?
(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数。

已知是关于的不等式的解,求的取值范围。

如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且

(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。

阅读下列材料:
如图1,在梯形ABCD中,AD∥BC,点M、N分别在边AB、BC上,且MN∥AD,记AD=a,BC=b,若,则有结论:

请根据以上结论,解答下列问题:

如图2,3,BE、CF是△ABC的两条角平分线,过EF上一点P分别作△ABC三边的垂线段PP1、PP2、PP3,交BC于点P1,交AB于点P2,交AC于点P3
(1)若点P为线段EF的中点,求证:PP1=PP2+PP3
(2)若点P在线段EF上任意位置时,试探究PP1、PP2、PP3的数量关系,给出证明。

如图,已知直线与反比例函数的图象交于A、B两点,与x 轴、y轴分别相交于C、D两点。

(1)如果点A的横坐标为1,利用函数图象求关于x的不等式的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号