游客
题文

数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面 A 处测得山顶 B 的仰角 BAC 38 . 7 ° ,再由 A 沿水平方向前进377米到达山脚 C 处,测得山坡 BC 的坡度为 1 : 0 . 6 ,请你求出仙女峰的高度(参考数据: tan 38 . 7 ° 0 . 8 )

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用-仰角俯角问题
登录免费查看答案和解析
相关试题

直线分别与x,y轴交点为C,A,BC=AC,AE平分∠CAO,OD平分∠AOC交AE于点D,连接BD交y轴于点F,点P从点B出发沿线段BC匀速运动,速度为5单位/秒,同时点Q从点C出发沿线段CA匀速运动,速度为5单位/秒,设点P,Q的运动时间为t秒.
(1)求线段BE的长.
(2)若△PEQ的面积为S,在点P,Q的运动过程中,求S与t的函数关系式,直接写出自变量t的取值范围.

已知⊙O过点D(4,3),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.

已知抛物线y=ax2﹣2ax+c﹣1的顶点在直线y=﹣上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α22=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.

如图,抛物线y=﹣x2+px+q与x轴交于A、B两点,与y轴交于C点,且∠ACB=90°,又tan∠CAO﹣tan∠CBO=2.
(1)求此二次函数的解析式;
(2)若平行于x轴的直线交抛物线于M、N两点,以MN为直径的圆恰好与x轴相切,求此圆的半径长.

如图,二次函数y=ax2+bx(a>0)的图象与反比例函数图象相交于点A,B,已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
①求实数k的值;
②求二次函数y=ax2+bx(a>0)的解析式;
③设抛物线与x轴的另一个交点为D,E点为线段OD上的动点(与O,D不能重合),过E点作EF∥OB交BD于F,连接BE,设OE的长为m,△BEF的面积为S,求S于m的函数关系式;
④在③的基础上,试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时E点的坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号