游客
题文

阅读理解题:

定义:如果一个数的平方等于 1 ,记为 i 2 = 1 ,这个数 i 叫做虚数单位,把形如 a + bi ( a b 为实数)的数叫做复数,其中 a 叫这个复数的实部, b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.

例如计算: ( 2 i ) + ( 5 + 3 i ) = ( 2 + 5 ) + ( 1 + 3 ) i = 7 + 2 i

( 1 + i ) × ( 2 i ) = 1 × 2 i + 2 × i i 2 = 2 + ( 1 + 2 ) i + 1 = 3 + i

根据以上信息,完成下列问题:

(1)填空: i 3 =   i 4 =   

(2)计算: ( 1 + i ) × ( 3 4 i )

(3)计算: i + i 2 + i 3 + + i 2017

科目 数学   题型 解答题   难度 中等
知识点: 整式的混合运算
登录免费查看答案和解析
相关试题

(年广西玉林、防城港10分)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.
(1)求证:四边形BMNP是平行四边形;
(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.

(年广西柳州10分)如图,正方形ABCD的边长为l,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.

(1)求线段PQ的长;
(2)问:点P在何处时,△PFD∽△BFP,并说明理由.

(2014年广东珠海9分)如图,矩形OABC的顶点A(2, 0)、C(0,).将矩形OABC绕点O逆时针旋转30°,得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.
(1)若抛物线经过G、O、E三点,则它的解析式为:
(2)如果四边形OHMN为平行四边形,求点D的坐标;
(3)在(1)(2)的条件下,直线MN抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设ΔPQH的面积为s,当时,确定点Q的横坐标的取值范围.

(年辽宁锦州14分)如图,平行四边形ABCD在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n经过点A和C.
(1)求抛物线的解析式.
(2)该抛物线的对称轴将平行四边形ABCO分成两部分,对称轴左侧部分的图形面积记为S1,右侧部分图形的面积记为S2,求S1与S2的比.
(3)在y轴上取一点D,坐标是(0,),将直线OC沿x轴平移到O′C′,点D关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.

(年辽宁阜新12分)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.
(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;
(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;
(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号