已知:如图, 是 的直径, ,点 , 是 上两点,连接 , , ,弦 平分 , ,过点 作 交 的延长线于点 ,垂足为点 .
(1)求扇形 的面积(结果保留 ;
(2)求证: 是 的切线.
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.
(2)请在(1)的基础上,完成下列问题:
①写出点的坐标:C、D;
②⊙D的半径=.( 结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面面积. (结果保留π)
如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:
刹车时车速/km•h﹣1 |
0 |
10 |
20 |
30 |
40 |
50 |
60 |
刹车距离/m |
0 |
0.3 |
1.0 |
2.1 |
3.6 |
5.5 |
7.8 |
(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?
阅读材料:
如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=﹣,x1x2=
.
这是一元二次方程根与系数的关系,我们利用它可以用来解题:
设x1,x2是方程x2+6x﹣3=0的两根,求x+x
的值.
解法可以这样:∵x1+x2=﹣6,x1x2=﹣3,则x+x
=(x1+x2)2﹣2x1x2=(﹣6)2﹣2×(﹣3)=42.
请你根据以上解法解答下题:
已知x1,x2是方程x2﹣4x+2=0的两根,求:
(1)+
的值;
(2)(x1﹣x2)2的值.
已知关于x的方程.
(1)如果此方程有两个不相等的实数根,求m的取值范围;
(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.