已知:如图,在四边形 中, ,点 为 边上一点, 与 分别为 和 的平分线.
(1)请你添加一个适当的条件 ,使得四边形 是平行四边形,并证明你的结论;
(2)作线段 的垂直平分线交 于点 ,并以 为直径作 (要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下, 交边 于点 ,连接 ,交 于点 ,若 , ,求 的半径.
已知:抛物线与
轴交于A(1,0)和B(
,0)点,与
轴交于C点
(1)求出抛物线的解析式;
(2)设抛物线对称轴与轴交于M点,在对称轴上是否存在P点,使
为等腰三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时点E 的坐标.
已知:在梯形中,
点
是
的中点,
是正三角形.动点P、Q分别在线段
和
上运动,且∠MPQ=60°保持不变.
(1)求证:△BMP∽△CPQ
(2)设PC=,MQ=
求
与
的函数关系式;
(3)在(2)中,当取最小值时,判断
的形状,并说明理由.
已知,如图,D为△ABC内一点连接BD、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、CE交于E,连接DE.
(1)求证:(2)求证:△DBE∽△ABC.
以下两图是一个等腰Rt△ABC和一个等边△DEF,要求把它们分别分割成三个三角形,使分得的三个三角形互相没有重叠部分,并且△ABC中分得的三个小三角形和DEF中分得的三个小三角形分别相似.请画出两个三角形中的分割线,标出分割得到的小三角形中两个角的度数.
已知:在Rt△ABC,∠C=90°,D是BC边的中点,DE⊥AB于E,tanB=,AE=7,求DE