游客
题文

如图,抛物线 y = a x 2 + 2 x + c ( a < 0 ) x 轴交于点 A 和点 B (点 A 在原点的左侧,点 B 在原点的右侧),与 y 轴交于点 C OB = OC = 3

(1)求该抛物线的函数解析式.

(2)如图1,连接 BC ,点 D 是直线 BC 上方抛物线上的点,连接 OD CD OD BC 于点 F ,当 S ΔCOF : S ΔCDF = 3 : 2 时,求点 D 的坐标.

(3)如图2,点 E 的坐标为 ( 0 , 3 2 ) ,点 P 是抛物线上的点,连接 EB PB PE 形成的 ΔPBE 中,是否存在点 P ,使 PBE PEB 等于 2 OBE ?若存在,请直接写出符合条件的点 P 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

分解因式

分解因式:

分解因式:

982-101×99(用乘法公式计算)

化简:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号