如图,抛物线 y = a x 2 + 2 x + c ( a < 0 ) 与 x 轴交于点 A 和点 B (点 A 在原点的左侧,点 B 在原点的右侧),与 y 轴交于点 C , OB = OC = 3 .
(1)求该抛物线的函数解析式.
(2)如图1,连接 BC ,点 D 是直线 BC 上方抛物线上的点,连接 OD , CD . OD 交 BC 于点 F ,当 S ΔCOF : S ΔCDF = 3 : 2 时,求点 D 的坐标.
(3)如图2,点 E 的坐标为 ( 0 , − 3 2 ) ,点 P 是抛物线上的点,连接 EB , PB , PE 形成的 ΔPBE 中,是否存在点 P ,使 ∠ PBE 或 ∠ PEB 等于 2 ∠ OBE ?若存在,请直接写出符合条件的点 P 的坐标;若不存在,请说明理由.
分解因式
分解因式:
982-101×99(用乘法公式计算)
化简:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号